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Abstract

A time accurate, high-order, conservative, yet efficient method named Finite Spectral Volume (FSV) is

developed for conservation laws on unstructured grids. The concept of a "spectral volume" is introduced

to achieve high-order accuracy in an efficient manner similar to spectral element and multi-domain

spectral methods. In addition, each spectral volume is further sub-divided into control volumes (CVs),
and cell-averaged data from these control volumes is used to reconstruct a high-order approximation in

the spectral volume. Riemann solvers are used to compute the fluxes at spectral volume boundaries. Then
cell-averaged state variables in the control volumes are updated independently. Furthermore, TVD (Total

Variation Diminishing) and TVB (Total Variation Bounded) limiters are introduced in the FSV method to
remove/reduce spurious oscillations near discontinuities. A very desirable feature of the FSV method is
that the reconstruction is carried out only once, and analytically, and is the same for all cells of the same

type, and that the reconstruction stencil is always non-singular, in contrast to the memory and CPU-
intensive reconstruction in a high-order finite volume (FV) method. Discussions are made concerning

why the FSV method is significantly more efficient than high-order finite volume and the Discontinuous
Galerkin (DG) methods. Fundamental properties of the FSV method are studied and high-order accuracy

is demonstrated for several model problems with and without discontinuities.

1 Framework of the Finite Spectral Volume Method

To present the basic idea, we consider the following multi-dimensional scalar conservation laws:

Ou(x, y,t) Of(u(x, y,t)) Og(u(x, v,t))
+ + " =0 (la)

Ot Ox Oy

on domain ,(2 with the following initial condition

u(x, y,O) = Uo(X, y) (lb)

and appropriate boundary conditions on. Domain g-2is discretized into N non-overlapping cells which are

called spectral volumes (SVs), i.e.
N

if2 = U S, (2)
I=l

The reason why the cells are called SVs will be clear later. Integrating (1) on a SV S,, we obtain

O"dV
I a t + _(F.n)dA:O (3)
S, OSi
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whereF = (f g), and n is the unit outward normal of OSi , the boundary of S,. Define the cell averaged

state variable for Si as

SudV

u-, _ si (4)
v,

where Vi is the volume (area in 2D) of S_. Then (3) becomes

1£i-- ( F • n)dA = 0 (5)
dt + V-,- r=l ar

where L is the number of faces (edges in 2D) in S, and Ar represents the r-th face. The surface integration

on each face can be performed with a k-th order accurate Gauss quadrature formula, i.e.
J

f (F • n)da = _., wrjF(U(Xrjy q )) • nra ,. + O(AJl k) (6)
Ar j=l

where wrj are the Gauss quadrature weights, (x,, y,) are the Gauss quadrature points, h is the maximum

span of all the SVs in x and y directions, time t is omitted whenever there is no confusion. If F = constant,
the following identity exists:

L

Z y(F•n)dA=O (7)

r=l Ar

Therefore, we will gain an extra order if we sum up the surface integrals for all faces of S, i.e.,
L L J

Z f (F • n)dA = E E wrjF(u(XrJ, YrJ))'nrAr + O(Arhk +1) (8)

r=l A,. r=l j=l

Since O(V i) = O( Arh ) , therefore we have

(F•n)dA= l-_ZZwrjF(u(.r.rj, Yrj))•nrAr+O(h k) (9)
Vi r=l j=l

Now assume a multi-dimensional polynomial in x and y of order at most k - ! exists on S, which is a k-th

order approximation to the state variable, i.e.,

pi(x, y) =u(x, y)+O(hk), (x, y)_ S i (10)

This polynomial is called a reconstruction of the state variable. With the polynomial distribution on each
SV, the state variable is most likely discontinuous across the SV boundaries, unless the state variable is a

polynomial of order k - 1 or less. Therefore, the flux integration involves two discontinuous state
variables just to the left and right of a face of the SV boundary. This flux integration is then carried out

using an exact Riemann solver or one of the Lipschitz continuous approximate Riemann solvers or flux
splitting procedures, i.e.,

F(u(xq, Yrj )) • nr = FRiemann (Pi (Xrj, Yrj ), Pn (Xrj, Yrj ), nr )

(11)
+ O(Pi(Xrj, Yrj) - Pn(Xrj , Yrj))

Here Pn is the reconstruction polynomial of a neighboring SV S,,, which shares face Ar with S,. Both Pi

and Pn are k-th order approximations of the exact state variable, i.e.,

Pi (Xrj, Yrj ) = U(Xrj, Yrj ) + O( hk ) (12a)

pn(Xrj, Yrj) = U(Xrj, Yrj) + O( h k ) (12b)

Therefore



F (u( Xrj, Yrj )) • n = FRien,a,,n (pi(Xrj, Yrj ), pn (Xrj, Yrj ),nr ) + O(h k ) (13)

Substituting (13) into (6), we obtain
J

f(F•n)dA= EWrjFRiema,,,,(pi(xrj,Yrj),p,,(Xrj,Yrj),nr)Ar +O(Arh k ) (14)

A, j=l

Summarizing (5)-(14), we obtain the following semi-discrete, k-th order accurate scheme on S, for the

conservation laws (1)

1 ,,--, ,,--,LJ
+ _.___wrjFRiema,,,,(pi(Xrj,Yrj),p,_(Xrj,Yrj),nr)Ar=O(h k ) (15)

d-T V//r=l j=l

What we have done so far follows exactly the finite volume doctrine. We, however, omitted a vital detail,

i.e., how we build the high-order reconstruction polynomial given just the cell-averaged state variables for
the SVs. Here is where the new method departs from the traditional FV scheme. In a FV method, a stencil

(a group of neighboring cells and the cell under consideration) is used to build a high-order polynomial

approximation to the state variable on the cell under consideration. Depending on the order of accuracy, a

very large number of (up to 60-100) cells may be necessary to perform a non-singular quadratic data
reconstruction. For an unstructured grid, each cell has a unique reconstruction stencil, and the

reconstruction problem needs to be solved for each and every cell at each and every time step or iteration.
The reconstruction can be very memory and CPU intensive especially for higher than linear

reconstructions. This is probably why we have seen few attempts to perform quadratic reconstructions in

three dimensions. A recent study on a 3-D quadratic reconstruction [5] showed that the cost in memory

and CPU time does not justify the effort.

In this paper, the FSV method is developed to address this very drawback. Our solution is as follows.
Instead of using a large stencil of neighboring cells to perform the reconstruction, we subdivide the SV
into control volumes (CVs). The order of accuracy of the reconstruction determines the number of CVs to

be generated in each SV. For example, for a linear reconstruction on a triangle, the triangle is divided into

at least three CVs as shown in Figure la, and cell averaged state variables are defined on the CVs. Figures

lb and lc give some possible CV subdivisions for quadratic and cubic data reconstructions. The number
of CVs in Figure 1 is the minimum required for these polynomial reconstructions. Other CV subdivisions

are definitely possible.

With any of these high-order reconstructions, Eq. (15) can then be used to update the cell-averaged state
--n+l

variable on the SVs, i.e., the cell-averaged state variable _/ for S, at a new time level n+l (i.e. u, ) can

be obtained with an appropriate time integration scheme based on the solution at time level n with t =

nAt, where At is the time step. However, in order to use the same high-order reconstruction at time level
--n+l --n

n+l, it is necessary to "scatter" the update Aft, = u, - u i back to the cell-averaged state variables at

all the CVs in S, This is how we perform the scattering operation. Each CV inside a SV is treated

separately as if it is independent to update the cell-averaged state variable for the CV. Note that the subtle
difference between a FV and a FSV method is that all the CVs in a SV use the same data reconstruction.

As a result, it is not necessary to use a Riemann flux or flux splitting for the interior boundaries between
the CVs inside a particular SV because the state variable is continuous across the interior CV boundaries.

Riemann fluxes are only necessary at the boundaries of the SV. To maintain a high-order accuracy,

Gaussian quadrature formulas are again used, not only for the Riemann fluxes through the SV boundaries,
but also for the fluxes through interior CV boundaries. The most significant advantage of the FSV method,

as compared with the FV method, is that the reconstruction for a particular cell type (e.g. triangles) with a

certain CV subdivision (e.g. those shown in Figure 1) is exactly the same. Even though the shape of the
SVs may all be different, as long as they are geometric similarly subdivided, they all have the same



reconstruction(in theparameterspace,tobeexplainedin thefinalpaper),andtheweightsforevaluating
thestatevariablesin termof cell-averagedunknownsat similarquadraturepointsareall thesame.
Therefore,thememoryandCPUintensivereconstructionsusedin a FV method are solved analytically

without taking any extra memory in the FSV method. Furthermore, exact fluxes rather than Riemann
fluxes are used at the interior boundaries of the CVs, resulting again significant savings because the

Riemann flux is usually several time more expensive to compute than the exact flux.

The idea can of course be easily extended to other cell types such as quadrilaterals, tetrahedra, hexahedra,

prisms, etc. For cell types other than triangles and tetrahedra, it appears that symmetric CV subdivisions
with the minimum number of CVs for a given order of accuracy are not easily found.

The FSV method shares many advantages with the Discontinuous Galerkin (DG) method [2-4] in that it is

compact which is suitable for parallel computing, high-order accurate, conservative, and capable of

handling complex geometries. Furthermore, the FSV method is expected to be much more efficient than
the DG method, and has higher resolution than the DG method for discontinuities because of the

availability of local cell-averaged state variables at the control volumes.

The main steps in a k-th order FSV method (with an order k-I polynomial reconstruction) are:
1. Compute the state variables at the quadrature points;

2. Use a k-th order accurate quadrature formula (exact for a polynomial of order k - 1) and a Riemann
solver to compute the surface flux integrals at the spectral volume boundaries, and use a k-th order

accurate quadrature formula for analytical fluxes for interior control volume boundaries because the
state-variable is continuous across the interior CV boundaries;

3. Use a TVD Runge-Kutta scheme for time integration;

The main steps in a k-th order DG method are:
I. Compute the state variables at the quadrature points;
2. Use a Riemann solver and a 2k-th order quadrature formula to compute the surface flux integrals;

3. Use a (2k-1)-th order quadrature formula to compute the volume integrals;

4. Left multiply the residual by the inverse of the mass matrix because the mass matrix is usually not

diagonal for k > 2;
5. Use a TVD Runge-Kutta scheme for time integration;

Note that with the FSV method, the high-order volume integration required in a DG method is completely
eliminated. Furthermore, the surface integral in the FSV method needs only to be k-th order accurate

instead of the 2k-th order accuracy required in a DG method. As a result, the FSV method requires only

half the quadrature points required by a DG method to carry out the surface integration. For fourth order
DG and FSV methods, there are 10 degrees of freedom (DOF) in 2D for a single variable. In a DG

method, 4 quadrature points are required to compute the surface integral on a single edge to achieve the

desired accuracy, and 12 quadrature points are required to compute the volume integral up to the desired
accuracy [2]. To update all the DOFs (assuming a single variable) for a single element using the DG
method, (3x4xlO + 12x10) = 240 variable evaluations at the quadrature points are required. In order to

compute the surface integrals, 3x4xlO = 120 Riemann fluxes need to be computed. In contrast, only 2

quadrature points are necessary to compute the surface integral on a single edge to achieve the desired

accuracy with a fourth-order FSV method. Therefore, to update all the DOFs for a single spectral volume

(element) using the FSV method, only 2x27 = 54 (27 being the number of total edges in the spectral
volume shown in Figure lc) variable evaluations at the quadrature points are required. In addition, only

2x12 = 24 (12 being the total number of spectral volume boundary edges) Riemann fluxes are required,
and the rest 2x15 = 30 (15 being the number of interior control volume boundary-edges) fluxes are

analytical fluxes because the reconstructed state variable is continuous across the interior control volume

boundaries inside the spectral volume. It is well known that a Riemann flux is usually several times more



expensivetocomputethantheanalyticalflux for theEulerequations.Let'sassumethataRiemannflux is
onlythreetimesasexpensiveasananalyticalflux (averyconservativeestimateindeed).ThentheFSV
methodrequires24+30/3= 34 Riemannfluxes. The third-orderTVD Runge-Kuttaschemetakes
negligibleCPUtimebecauseof theveryfewnumberof operations.Finallyin a fourthDG method,the
residualvectorhasto left-multiplybya 10x10matrixateachiteration.

If weassumethattheRiemannflux computationdominatesthetotalCPUtime,thentheFSVmethodis
about4timesasfastastheDGmethod.If ontheotherhand,variableevaluationsdominatetheCPUtime,
theFSVmethodcanbecloseto fivetimesasfastastheDGmethod.Overall,weexpectthefourth-order
FSVmethodto beabout4-5timesasfastasthefourth-orderDGmethodin 2D. If oneis interestedin
evenhigherorderaccurateschemes,theavailabilityof veryhigh-orderquadratureformulasmaybecome
an issuein a DG method.For example,a sixthorderDG schemenecessitatesa 12thorderquadrature
formulafor surfaceintegration,andan l Ithorderquadratureformulafor volumeintegration.In three-
dimensions,it isexpectedtheadvantageof theFSVmethodisevenmorepronouncedbecausehigh-order
quadratureformulasfor volumeintegrationinatetrahedronarerequiredin theDGmethod.

2. NumericalTests
WehaveimplementedtheFSVmethodin both ID and2D,witha varietyof limiters(control-volume-
wise(CV-wise)andspectral-volume-wise(SV-wise)TVDM andTVBM limiters)to eliminatespurious
oscillations.In the final paper,detailedformulationswill be given. Here we just show several
demonstrationcasestodemonstrateitscapability.

l Test with the Burger's Equation

In this test, we solve the non-linear Burger's equation with a periodic boundary condition:

Oil Oil 2 / 2
+ -0, -l<x<l

Ot Ox

u(x,O) = Uo(X) = 1 + I sin(;'/a).
2

The exact solution is smooth up to t = 2/n, then it develops a moving shock, which interacts with
rarefaction waves. At t = 0.3, the solution is still smooth. FSV schemes from second to sixth order of

accuracy are tested, and the L 1 and L_, errors are listed in Table 1, together with the numerical order of

accuracy. Note that the expected formal orders of accuracy for all the tested schemes are achieved in both

the L! and L,_ norms. The computed solution with a second-order FSV scheme on 6 SVs is compared

with the solution with a fourth-order FSV scheme on 3 SVs in Figure 2. The numerical solutions therefore

have the same number of degrees-of-freedom. Note that the fourth-order scheme gave a visibly better
solution than the second-order scheme.

At t = 2�re, a shock starts to form in the solution. The numerical solution would be oscillatory without

limiters. Figure 3 displays the computed solutions with a 4%order FSV scheme on 20 SVs using various

limiters. Note that the SVTVDM limiter strongly dissipated the numerical solution, while the CVTVDM

limiter gave a much better solution. Both TVBM limiters with M = 20 gave reasonable results, with the
CVTVBM limiter showing a slightly more accurate prediction. The solution with the SVTVBM limiter is

slightly oscillatory.

At t = l, a shock wave has formed in the solution. The numerical solutions computed with a fourth-order

FSV scheme on 20 and 40 SVs using both TVBM limiters are presented in Figure 4. Note that the shock-

wave is generally captured in one spectral volume, and the CVTVBM limiter once again produced a
solution with a better resolution for the shock wave.



Finallyto seewhetherTVBMlimitersaffectthesolutionaccuracyawayfromtheshockwave,the local
solutionerrorswitha4%orderFSVschemeondifferentgridsareplottedinFigure5.It is shownclearly
in theFigurethattheexpectedorderof accuracy(4th-order)is retainedawayfromtheshock-wavewith
boththe CVTVBM and SVTVBMlimiters.TheCVTVBM limiter is shownagainto havea better
resolutionfortheshockwave.

2. Accuracy Study with 2D Linear Wave Equation

In this case, we test the accuracy of the FSV method on the linear equation:
Ou Ou Ou
--+--+--=0, -l<x<l, -l<y<l
Ot bx Oy

u(x, y,O) = Uo(X, y), periodic boundary condition

The initial condition is Uo(X, y)= sinn'(x + y). The numerical simulation is carried until t = 1 on a

triangular grid generated from a uniform Cartesian grid by cutting each Cartesian cell into two triangles.

In Table 2, we show the L! and Loo errors produced using second to fourth order FSV schemes with CVs

shown in Figure 1. The third-order TVD Runge-Kutta time-integration scheme was used for all the

computations presented here. The errors presented in the table are time-step independent because the time

step At was made small enough so that the errors are dominated by the spatial discretization. Again it is

shown that the desired order of accuracy is obtained for all cases.

Conclusions

A high-order Finite Spectral Volume (FSV) method is developed in this study. The concept of "spectral
volume" is introduced to achieve high-order accuracy in a very efficient manner. The FSV method is

much more efficient in terms of both memory and CPU requirement than a high-order finite volume
method because the reconstruction for a particular grid type is solved only once, and analytically, and is

never explicitly carried out. Furthermore, the "reconstruction stencils" are never singular. We also
discussed why the FSV method is significantly more efficient than the DG method. Control-volume-wise

and spectral-volume-wise TVDM and TVBM limiters are developed to remove spurious oscillations near
discontinuities. It has been shown that CV-wise limiters perform better than SV-wise limiters. Because of

the availability of local data, the FSV method is expected to produce much sharper discontinuity profiles
than the DG method.

Accuracy studies with 1D and 2D linear and non-linear scalar conservation laws have been carried out,

and the order of accuracy claim has been numerically verified. The TVBM limiters were found to
maintain uniformly high-order accuracy away from discontinuities.
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Table 1. Accuracy on u

NDOF

2O

4O
2

8O

160

320

64O

3O

6O
3

120

240

48O

96O

2O

4O
4

80

160

320

640

2O

Order of Accuracy

+uu x =O, with Uo(X )=

L_ error

2.74e-2

9.97e-3

3.09e-3

8.1 le-4

2.08e-4

5.24e-5

1.17e-2

2.11e-3

3.90e-4

5.77e-5

7.72e-6

9.91e-7

1.64e-2

7.81e-4

2.59e-4

L_ order

1.46

1.69

1.93

1.96

1.99

2.47

2.44

2.76

2.90

2.96

4.39

1.59

1.67e-5 3.96

1.11e-6 3.91

7.01e-8 3.99

1.45e-2

+ 0.5sin(rt_') at t = 0.3

1.92

1.97

2.00

2.00

2.00

2.91

2.83

2.88

2.93

2.96

L 1 error L I

1.16e-2

3.07e-3

7.82e-4

1.95e-4

4.88e-5

1.22e-5

1.44e-3

1.92e-4

2.70e-5

3.66e-6

4.80e-7

6.15e-8

2.90e-3

1.09e-4

1.25e-5

7.17e-7

4.35e-8

2.71e-9

2.09e-3

6.45e-5

3.45e-6

9.54e-8

3.78e-9

1.32e-10

2.74e-4

3.66e-6

1.45e-7

1.77e-9

2.53e-11

order

4.73

3.12

4.12

4.04

4.00

40 8.15e-4 4.15 5.02
5

80 9.10e-5 3.16 4.22

160 4.56e-6 4.32 5.18

320 1.89e-7 4.59 4.66

640 6.73e-9 4.81 4.84

30 2.96e-3

60 5.97e-5 5.63 6.23
6

120 5.48e-6 3.45 4.66

240 8.76e-8 5.97 6.36

480 1.55e-9 5.82 6.13
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Table 2. Accuracy on Itt + Ux + U,, = 0, //0(X, 3') = sin[Tr(x + y)] at t = 1

Order of Accuracy Grid _ error L 1 order L= error L_ order

10xl0x2 1.64e-2 4.13e-2

20x20x2 4.01e-3 2.03 9.59e-3 2.11
2

40x40x2 9.85e-4 2.03 2.21e-3 2.18

80x80x2 2.44e-4 2.01 5.18e-4 2.09

160x 160x2 6.09e-5 2.00 1.24e-4 2.06

10xl0x2 4.18e-3 - 7.76e-3

20x20x2 5.33e-4 2.97 1.01e-3 2.94

3 40x40x2 6.70e-5 2.99 1.24e-4 3.03

80x80x2 8.13e-6 3.04 1.5 le-5 3.04

160x 160x2 1.05e-6 2.95 1.93e-6 2.97

10xl0x2 9.33e-5 - 3.17e-4

20x20x2 5.86e-6 3.99 1.94e-5 4.02
4

40x40x2 3.70e-7 3.99 1.24e-6 3.97

80x80x2 2.32e-8 4.00 7.78e-8 3.99

160x160x2 1.45e-9 4.00 4.84e-9 4.01
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Figure 1.

(a)

(b)

(c)
Control Volumes in a Triangular Spectral Volume (a) Linear; (b) Quadratic; (c) Cubic.
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Figure 2. Computed Solutions to the Burger's Equation at t = 0.3 Using a Second-Order and Fourth Order
FSV Schemes with 12 Degrees-of-Freedom without Limiters
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Figure 3. Computed Solutions to the Burger's Equation at t = 2/n Using a Fourth Order FSV Scheme with
CVTVDM, SVTVDM, and CVTVBM, SVTVBM Limiters on l0 SVs
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Figure 4. Computed Solutions to the Burger's Equations at t = 1 with CVTVBM and SVTVBM Limiters
Using 20 and 40 Spectral Volumes
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